

Class: ISC XII Subject: Maths Date:

TIME: 1 Hr. 30 Minutes M MARKS: 80

General instructions:

Read the following instructions carefully and strictly follow them:

- There are 33 questions in this question paper.
- The Question paper consists of three sections A , B and c . Candidates are required to attempt all questions from Section a and all questions either from Section B OR Section C .
- There is no negative marking.
- Specific instructions related to each part and a subdivision (Sections) is mentioned clearly before the questions.
- Candidates should read them thoroughly and attempt accordingly.
- Fill **OMR sheet with the pencil** given along with the Question paper .

SECTION A [64 Marks] (Answer all questions)

Question 1 [2]

If $A = \{1, 2, 3\}$, $B = \{1, 4, 6, 9\}$ and R is a relation from A to B defined by $R = \{(x, y): x > y, x \in A, y \in B\}$ then range of R is

a) {1,4,6,9}

- b) {4,6,9} c) {1}

d) ø

Question 2 [2]

The Principal value of $\tan^{-1} \left(2 \cos \left(\frac{2\pi}{3} \right) \right)$ is

a) $\frac{\pi}{2}$

- b) $\frac{-\pi}{2}$ c) $\frac{-\pi}{4}$

d) $\frac{\pi}{4}$

Question 3 [2]

The function $f: R \rightarrow R$ defined by $f(x) = x^2$ is

a) one - one but not onto b) many - one but onto c) one - one and onto d) many - one but not onto

Question 4 [2]

If $4\cos^{-1}x + \sin^{-1}x = \pi$ then value of x is

- b) $\frac{1}{\sqrt{2}}$
- c) $\frac{\sqrt{3}}{2}$

d) $\frac{2}{\sqrt{3}}$

Question 5 [2]

The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is

- a) symmetric only
- b) reflexive only
- c) an equivalence relation
- d) transitive only

Question 6 [2]

The value of $\sin\left\{\tan^{-1}\left(-\frac{7}{24}\right)\right\}$ is

d) $\frac{7}{25}$

Question 7 [2]

If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$ then the value of x is

- b) ±3
- c) ±6

d) 6

Question 8 [2]

If $A = \begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}$ is a symmetric matrix then x is equal to

- a) 4 b) 3
- c) -4

d) -3

Question 9 [2]

If A is a singular matrix, then adj A is

- a) non singular b) singular c) symmetric
- d) not defined

Question 10 [2]

If $\begin{bmatrix} 1 & -1 & x \\ 1 & x & 1 \end{bmatrix}$ has no inverse, then the real value of x is x -1 1

- a) 2
- b) 3
- c) 0

d) 1

Question 11 [2]

If $A^2 - A + I = 0$, then A^{-1} is a) A^{-2} b) A + I c) I - A

- d) A I

Question 12 [2]

If the function $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2}, & x = 0 \end{cases}$ is continuous at x = 0 then k is equal to

a) 3

d) 12

Question 13 [2]

If $y=t-\frac{1}{t}$ and $x=t+\frac{1}{t}$ then $\frac{dy}{dx}$ is equal to

- a) $\frac{t^2-1}{t^2+1}$ b) $\frac{1}{t^2+1}$ c) $\frac{t^2+1}{t^2-1}$

Question 14 [2]

If $x^y = e^{x-y}$ then $\frac{dy}{dx}$ is

a)
$$\frac{1+x}{1+\log x}$$

a)
$$\frac{1+x}{1+\log x}$$
 b) $\frac{1-\log x}{1+\log x}$

c) not defined

d)
$$\frac{\log x}{(1 + \log x)^2}$$

[2]

Question 15

If $y = \sqrt{\sin x + y}$ then $\frac{dy}{dx}$ is

a) $\frac{\sin x}{2y - 1}$ b) $\frac{\sin x}{1 - 2y}$ c) $\frac{\cos x}{1 - 2y}$

a)
$$\frac{\sin x}{2y-1}$$

b)
$$\frac{\sin x}{1-2y}$$

c)
$$\frac{\cos x}{1-2y}$$

d)
$$\frac{\cos x}{2y-1}$$

Question 16 [2]

The point on the curve $y = 12x - x^2$ where the slope of the tangent is zero will be

Question 17 [2]

The values of x for which the matrix $A = \begin{bmatrix} x-1 & 1 & 1 \\ 1 & x-1 & 1 \\ 1 & 1 & x-1 \end{bmatrix}$ is singular is

Question 18 [2]

The value of $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ is equal to

a)
$$\frac{-1}{2}$$

b)
$$\frac{1}{2}$$

c)
$$\frac{-1}{4}$$

d)
$$\frac{1}{4}$$

Question 19 [2]

If $y = (\sin^{-1} x)^2$ then $(1-x^2)\frac{d^2 y}{dx^2}$ is equal to

a)
$$x \frac{dy}{dx} + 2$$

b)
$$x \frac{dy}{dx} - 2$$

a)
$$x\frac{dy}{dx} + 2$$
 b) $x\frac{dy}{dx} - 2$ c) $-x\frac{dy}{dx} + 2$

d)
$$-x\frac{dy}{dx} - 2$$

[2]

Derivative of $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ w.r.t $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is

Let $A = R - \{3\}$ and $B = R - \{1\}$. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$

- (i) the domain of the function $f: A \rightarrow B$ is
- a) $R \{1\}$
- b) $R \{3\}$
- c) [0, \infty)
- $(\infty,0)$

- (ii) Codomain of the function $f: A \rightarrow B$ is
- a) R-{1}
- b) $R \{3\}$
- c) R
- d) [0, ∞)

- (iii) Range of the function $f: A \rightarrow B$ is
- a) R-{1}
- b) $R \{3\}$
- c) R
- d) [0, \infty)

- (iv) the function is
- a) many one onto
- b) many one into c) one one into d) one one onto

Question 22 [4 x 2]

An architect designs a building for a multi - national company. The windows have the shape of rectangle surmounted by an equilateral triangle. The perimeter of the window is 12 m as shown below:

- (i) If x and y represent the length and breadth of the rectangular region respectively then the relation between the variable is
- a) 2x + y = 12
- b) 3x+2y=12 c) 2x+3y=12 d) x+y=12

- (ii) The area of the region expressed as a function is

a)
$$2x - \left(\frac{3}{2} + \frac{\sqrt{3}}{16}\right)x^{\frac{1}{2}}$$

b)
$$3x - \left(\frac{3}{2} + \frac{\sqrt{3}}{4}\right)x^3$$

c)
$$6x - \left(\frac{3}{2} - \frac{\sqrt{3}}{4}\right)x^{\frac{1}{2}}$$

a)
$$2x - \left(\frac{3}{2} + \frac{\sqrt{3}}{16}\right)x^2$$
 b) $3x - \left(\frac{3}{2} + \frac{\sqrt{3}}{4}\right)x^2$ c) $6x - \left(\frac{3}{2} - \frac{\sqrt{3}}{4}\right)x^2$ d) $6x - \left(\frac{1}{2} + \frac{\sqrt{3}}{4}\right)x^2$

(iii) Area is maximum when x is equal to

a)
$$\frac{6+\sqrt{5}}{11}$$

b)
$$2\left(\frac{6-\sqrt{3}}{11}\right)$$

c)
$$3\left(\frac{6+\sqrt{5}}{21}\right)$$

b)
$$2\left(\frac{6-\sqrt{3}}{11}\right)$$
 c) $3\left(\frac{6+\sqrt{5}}{21}\right)$ d) $4\left(\frac{6+\sqrt{3}}{11}\right)$

(iv) Area is maximum when the breadth is

a)
$$6\left(\frac{5-\sqrt{3}}{11}\right)$$

b)
$$5\left(\frac{6+\sqrt{5}}{21}\right)$$

c)
$$4\left(\frac{6+\sqrt{3}}{11}\right)$$

a)
$$6\left(\frac{5-\sqrt{3}}{11}\right)$$
 b) $5\left(\frac{6+\sqrt{5}}{21}\right)$ c) $4\left(\frac{6+\sqrt{3}}{11}\right)$ d) $6\left(\frac{5+\sqrt{3}}{11}\right)$

Question 23 [4 x 2]

If the matrix $A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$ and the system of equation is

4x+2y+3z=2, x+y+z=1 and 3x+y-2z=5 then

(i) A is equal to

$$c) - 20$$

$$d) - 24$$

(ii) which is true about the above given condition:

- a) the system is consistent and has infinite solution
- b) the system is inconsistent and has no solution
- c) the system is consistent and it has a unique solution
- d) the system has trivial solution

(iii) Adj A is equal to

a)
$$\begin{bmatrix} -3 & 5 & -2 \\ 7 & -17 & 2 \\ -1 & -1 & 2 \end{bmatrix}$$

a)
$$\begin{bmatrix} -3 & 5 & -2 \\ 7 & -17 & 2 \\ -1 & -1 & 2 \end{bmatrix}$$
 b) $\begin{bmatrix} -3 & 7 & -1 \\ 5 & -17 & -1 \\ -2 & 2 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 3 & -5 & 2 \\ -7 & 17 & -2 \\ 1 & 1 & -2 \end{bmatrix}$ d) $\begin{bmatrix} 3 & -7 & 1 \\ -5 & 17 & 1 \\ 2 & -2 & -2 \end{bmatrix}$

c)
$$\begin{bmatrix} 3 & -5 & 2 \\ -7 & 17 & -2 \\ 1 & 1 & -2 \end{bmatrix}$$

d)
$$\begin{bmatrix} 3 & -7 & 1 \\ -5 & 17 & 1 \\ 2 & -2 & -2 \end{bmatrix}$$

(iv) The solution of the given system of equation is

a)
$$x=0$$
, $y=0$, $z=0$ b) no

a)
$$x = 0$$
, $y = 0$, $z = 0$ b) no solution c) $x = \frac{1}{2}$, $y = \frac{3}{2}$, $z = -1$ d) $x = \frac{-1}{2}$, $y = \frac{-3}{2}$, $z = 1$

d)
$$x = \frac{-1}{2}$$
, $y = \frac{-3}{2}$, $z =$

SECTION B [16 Marks] (Answer all questions)

Question 24 [2]

The direction cosines of the line joining (1, -1, 1) and (-1, 1, 1) are

b)
$$< 1/\sqrt{2}, -1/\sqrt{2}, 0 >$$
 c) $< -1/\sqrt{2}, 1/\sqrt{2}, 0 >$

d)
$$< \sqrt{2}, -\sqrt{2}, 0 >$$

Question 25

The equation of the line passing through the point (-1, 3, -2) and perpendicular to the lines $\frac{x}{1} = \frac{y}{2} = \frac{x}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{-2} = \frac{x+1}{5}$ is

a)
$$\frac{x+1}{2} = \frac{y-3}{-7} = \frac{z+2}{4}$$

b)
$$\frac{x+1}{2} = \frac{y-3}{7} = \frac{z+2}{4}$$

c)
$$\frac{x+1}{2} = \frac{y-3}{2} = \frac{z+2}{4}$$

a)
$$\frac{x+1}{2} = \frac{y-3}{-7} = \frac{z+2}{4}$$
 b) $\frac{x+1}{2} = \frac{y-3}{7} = \frac{z+2}{4}$ c) $\frac{x+1}{-2} = \frac{y-3}{-7} = \frac{z+2}{4}$ d) $\frac{x-1}{2} = \frac{y-3}{-7} = \frac{z-2}{4}$

Question 26 The acute angle between the lines $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$ and $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$ is

a)
$$\cos^{-1}(\frac{1}{2})$$

b)
$$cos^{-1}(\frac{2}{9})$$
 c) $cos^{-1}(\frac{1}{2})$

c)
$$cos^{-1}(\frac{1}{2})$$

d)
$$cos^{-1}(\frac{4}{c})$$

[2]

Question 27					[2]
Find the valu	e of p for which the ve	$ector \vec{a} = 3\hat{\imath} + 2\hat{\jmath} + 9\hat{k}$	and $\vec{b} = \hat{\imath} + p\hat{\jmath} + p\hat{\jmath}$	$3\hat{k}$ are parallel	
a) 6	b) $\frac{3}{2}$	c) $\frac{2}{3}$		d) $\frac{1}{3}$	
Question 28				[4	× 2]
$et \vec{a} = 2\hat{\imath} +$	$5\hat{\imath} - 3\hat{k}$ and $\vec{b} = \hat{\imath} - \hat{k}$	$2\hat{j} + 3\hat{k}$ are the two ve	ectors.		
	rojection of \vec{a} on \vec{b}	7.			
(a) $\frac{1}{\sqrt{14}}$	b) $\frac{3}{\sqrt{14}}$	c) $\frac{17}{\sqrt{14}}$	d) $\frac{-17}{\sqrt{14}}$		
ii) The vecto	or in the direction of the	the vector $\vec{a} = 2\hat{\imath} + 5\hat{\jmath}$	$-3\hat{k}$ that has mag	nitude 19 units is	
a) $\frac{1}{2\sqrt{19}}$ ($(2\hat{\imath} + 5\hat{\jmath} - 3\hat{k})$ b) $\frac{1}{\sqrt{3}}$	$\frac{9}{88}(2\hat{\imath} + 5\hat{\jmath} - 3\hat{k}) \text{c})$	$\tfrac{1}{\sqrt{2}}(2\hat{\imath}+5\hat{\jmath}-3\hat{k})$	d) $\frac{19}{\sqrt{2}}(2\hat{t} + 5\hat{j} - 3\hat{k})$	
iii) Find 2a -	$-\vec{b}$				
a) 3î + 3	$12\hat{j} + 9\hat{k}$ b) 3	$\hat{i} + 8\hat{j} - 3\hat{k}$	$3\hat{\imath} + 8\hat{\jmath} + 3\hat{k}$	d) $3\hat{i} + 12\hat{j} - 9\hat{k}$	
iv) The area given by	of the parallelogram	whose adjacent sides a	$\vec{a} = 2\hat{\imath} + 5\hat{\jmath} -$	$3\hat{k}$ and $\vec{b} = \hat{l} - 2\hat{j} + 3\hat{k}$ i	s
i) √3	b) 3√3	c) 9√3		d) 9	
	s	ECTION C [16 Mark	s] (Answer all ques	tions)	
uestion 29					[2]
		commodity is a linear f 250 units and Rs. 5000		Find cost as a function	
C(x) = 10x	c + 1500 b) $C(x) =$	10x + 1000 c) $C(x)$	(x) = 10x + 9000	C(x) = 100x + 1500	
uestion 30					[2]
he total cost	and total revenue fun	ections of a commodity	are given by $C(x)$:	=x+40 and	
R(x) = 10x -	$0.2x^2$. Then the brea	ak – even point(s).			
	b) 40	c) 5 and 40 bo	oth	d) Either 5 or 40	

Question 31 [2]

A manufacturer can sell x items of a commodity at price of Rs. (330-x) each . If the cost of producing x items is Rs. $(x^2+10x+12)$ then the profit function will be

a)
$$330x+12-2x^2$$

a)
$$330x+12-2x^2$$
 b) $330x-12-2x^2$ c) $320x+12-2x^2$ d) $320x-12-2x^2$

c)
$$320x + 12 - 2x^2$$

d)
$$320x - 12 - 2x^2$$

Question 32

[2]

The demand function of monopolist is given by $p = 100 - x - x^2$, then the marginal revenue function is

a)
$$MR = 100 + 2x + 3x^2$$
 b) $MR = 100 - 2x + 3x^2$ c) $MR = 100 - 2x - 3x^2$ d) $MR = 100 + 2x - 3x^2$

b)
$$MR = 100 - 2x + 3x^2$$

c)
$$MR = 100 - 2x - 3x^2$$

$$MR = 100 + 2r - 3r^2$$

Question 33

The total revenue received from the sale of x units of a product is given by $R(x) = 36x + 3x^2 + 5$. Then

(i) the average revenue is

a)
$$36 + 3x + 5x^2$$

b)
$$36x^2 + 3x^3 + 5x$$

a)
$$36+3x+5x^2$$
 b) $36x^2+3x^3+5x$ c) $36+3x+\frac{5}{x}$ d) $36+\frac{3}{x}+\frac{5}{x^2}$

d)
$$36 + \frac{3}{x} + \frac{5}{x^2}$$

(ii) the marginal revenue is

a)
$$36 + 6x$$

b)
$$36 + 6x + x^2$$

c)
$$36 + 3x$$

c)
$$36 + 3x$$
 d) $36 x + 6x^2$

(iii) the marginal revenue when x = 5 is

(iv) the actual revenue from selling 5th item is

