

SUBJECT: PHYSICS (THEORY)

Maximum Marks: 70

TimeAllowed:3 hours

General Instructions:

- 1) There are 33 questions in all. All questions are compulsory.
- 2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.
- 3) All the sections are compulsory.
- 4) Section A contains sixteen questions, twelve MCQ and four Assertion Reasoning based of 1mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study based questions of four marks each and Section E contains three long answer questions of five marks each.
- 5) There is no overall choice. However, an internal choice has been provided in one question in Section B, one question in Section C, one question in each CBQ in Section D and all three questions in Section E. You have to attempt only one of the choices in such questions.
- 6) Use of calculators is not allowed.
- 7) You may use the following values of physical constants where ever necessary.
- i. $c=3 \times 10^8 m/s$
- ii. $m_e = 9.1 \times 10^{-31} \text{kg}$
- iii. $e=1.6 \times 10^{-19} C$
- iv. $\mu_0 = 4\pi x 10^{-7} \text{Tm} A^{-1}$

v.
$$h = 6.63 \times 10^{-34} \text{Js}$$

vi.
$$\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-1}$$

vii. Avogadro's number=6.023X10²³ per gram mole

SECTION-A

Q.	Question	Marks
No.		
1	 If the direction of the electric field line due to two unlike point charges is from left to right then: (a) Positive charge is at left and negative charge is at right (b) Negative charge is at left and positive charge is at right (c) Both charges are at left (d) Both charges are at right 	1
2	If 1µAcurrent flows through a conductor when potential difference of 2V is applied across its ends, then the resistance of the conductor is (a) $2x10^{-6}\Omega$ (b) $2x10^{6}\Omega$	1
	(c) $0.2x10^{5}\Omega$ (d) $2x10^{3}\Omega$	
3	Three capacitors each of capacity C are connected in series. The resultant capacity will be $(a) = \frac{2C}{2} = \frac{1}{2} \frac{1}{2} \frac{2C}{2} = \frac{1}{2} \frac{1}$	1
	(a) $3C$ (b) $3/C$ (c) $C/3$ (d) $1/3C$	1.1.1

Л	Magnetic dinels memory is a vector quantity directed from	1
4	(a)Wastta East direction (b)North to South Pale	1
	(a) WestioEasturrection (b) North to South Fole	
	(c)Eastrowesturieetion (d)South to North Fole	
5	Which of the following is an example for diamagnetic substances?	1
5	which of the following is an example for diamagnetic substances.	1
	(a) Copper(b) nickel (c) aluminium (d)iron	
6	If a wire of length 2m is moving with a velocity of 1m/s perpendicular to a	1
	magnetic field of 0.5 T, then E.M.F. induced in the wire will be	
	(a) $0.2V$ (b) $1.0V$ (c) $0.5V$ (d) $2V$	
7	A hot-wire ammeter reads10A in an AC circuit. The peak value of the	1
	current is	
	(a) 5π A (b) $10\sqrt{2}$ A (c) $10\sqrt{2}$ A (d) $1/\sqrt{2}$ A	
8	In photo electric effect the maximum kinetic energy of emitted electron	1
	depends on	
	(a)wavelength (b) work function(c) intensity (d) frequency	
9	The total energy of an electron in the first excited state of hydrogen atom	1
	is about -3.4 eV. Its kinetic energy in this state is	
	$(a)^{2} 4 a^{2} V$ (b) $2 4 a^{2} V$ (c) $6 8 a^{2} V$ (d) $6 8 a^{2} V$	
10	(a) 5.4 eV (b) -5.4 eV (c) -0.8 eV (d) 0.8 eV	1
10	fields E and B. Choose the only incorrect statement from the following	1
	holds D and D. Choose the only meetreet statement nom the ronowing.	
	(a) E is perpendicular to B.	
	(b) E is parallel to B.	
	(c) E is perpendicular to the direction of propagation of the wave.	
11	(d) B is perpendicular to the direction of propagation of the wave.	1
11	A uniform magnetic field gets modifies as shown in Figure below, when two	1
	specimens A and B are placed in it.	
	A B	
	(a) A is Paramagnetic, B is diamagnetic	
	(b) A is ferromagnetic, B is paramagnetic	
	(c) A is diamagnetic, B is ferromagnetic	
	(d) A is diamagnetic, B is paramagnetic	
12	Two spherical nuclei have mass number 216 and 64 with their radii R1 and R2	1
	respectively. The ratio $\kappa 1/\kappa 2$ is equal to	
	(a)1:3 (b) 2:3 (c)3:1 (d)3:2	

	For Questions 13 to 16, two statements are given one labeled	
	Assertion(A) and other labeled Reason(R). Select the correct answer to	
	these questions from the options as given below.	
	(a) If both Assertion and Reason are true and Reason is correct	
	explanation of Assertion.	
	(b) If both Assertion and Reason are true but Reason is not the correct	
	explanation of Assertion.	
	(c) If Assertion is true but Reason is false.	
	(d) If both Assertion and Reason are false.	
12	A grantian (A) the feed length of a long for and light is more than that of hlue	1
13	Assertion(A): the local length of a lens for red light is more than that of blue $\frac{1}{2}$	1
	$\operatorname{Hgnt}(I_r > I_b),$	
	Reason(R): the refractive index of material is depend on wave length of light	
1.1	1.e. $(\mu_b > \mu_r)$	
14	Assertion(A): To increase the range of an ammeter, we must connect a	1
	suitable high resistance in series with it.	
	Reason(R) : The ammeter with increased range should have high resistance	
15	Assertion(A): In the process of photo electric emission, all emitted electrons	1
	do not have same kinetic energy.	
	Reason (R): the energy of emitted electrons depends on the intensity of	
	incident radiation.	
16	Assertion(A):V-I characteristic of p-n junction diode is same as that of any	1
	other conductor.	
	Reason(R):p-n junction diode obeys Ohm'slaw.	

SECTION-B

17	A conductor of length 'l' is connected to a dc source of potential 'V'. If the length of the conductor is tripled by gradually stretching it, keeping 'V' constant, how will	2
	(i) drift speed of electrons and(ii) resistance of the conductor be affected? Justifyyour answer.	
18	(a) Arrange the following electromagnetic waves in the descending order of their wavelengths.	2
	Microwaves,γ-rays,Ultravioletradiation,Visiblelight (b) Write one use of above waves having lowest and highest wavelength.	
19	The refractive index of a material of a concave lens is μ_1 . It is immersed in a medium of refractive index μ_2 . A parallel beam of light is incident on the lens. Trace the path of emergent rays when	2
	i) $\mu_2 > \mu_1$ ii) $\mu_2 < \mu_1$	
20	Draw suitable graphs to show the variation of photoelectric current (Ip) with collector plate potential (V) for	2
	i) a fixed frequency but different intensities $I_1 > I_2 > I_3$.	
	ii) A fixed intensity but different frequencies $V_1 > V_2 > V_3$.	

21	Explain, with the help of a suitable diagram, how (i) depletion layer and (ii) potential barrier is formed in a p-n junction diode. OR	2
	Draw a circuit diagram of a full wave rectifier. Draw the input and output waveforms indicating clearly the functions of the two diodes used.	

SECTION-C

22	Two long straight parallel conductors carry study currents I_1 and I_2 separated by a distance d. If the current are flowing in the same direction, show how the magnetic field setup in one produces an attractive force on the other. Obtain the	3
	expression for this force. Hence define one ampere.	
	OR	
	(a)With the help of labeled diagram, explain the underlying principle and working of a moving coil galvanometer.(a)What is the function of (i) uniform radial field (ii) soft iron core, in such a device?	
23	Three lenses focal lengths +10 cm, -10 cm and +30 cm are arranged coaxially as in the figure given below. Find the position of the final image formed by the combination.	3
	+10 cm -10 cm +30 cm	
	4 - 30 cm + 5 cm + 10 cm + 1	
24	Draw a plot showing the variation of binding energy per nucleon with mass	3
25	Define self inductance and write its SI unit. Obtain an expression of self inductance of a solenoid of length 'l'cross-sectional area 'A' having 'N' no. of turns.	3
26	In the network shown in fig. Calculate currents $I_{1,} I_2$ and I_3 .	3
	$A \xrightarrow{I_{1}} H \xrightarrow{6 \vee 6 \Omega} B$ $F \xrightarrow{I_{2}} H \xrightarrow{8 \vee 4 \Omega} C$ $E \xrightarrow{I_{3}} 12 \Omega D$	

27	A parallel plate capacitor each with plate area 'A' and separation discharged to a potential V, which is then disconnected. A dielectric slab of thickness d and dielectric constant K is now placed between the plates. What change if any, will take place in	3
	(i) capacitance	
	(ii) potential difference between the plates	
	(iii) electric field between the plates	
	Justify your answer of each case.	
28	The energy levels diagram of an atom is shown in Fig. Which of the transitions show the emission of a photon of wavelength 275nm? Which of these transitions corresponds to emission of radiation of (i) maximum and (ii) minimum wavelength? $ \begin{array}{c} \hline & A \\ \hline & B \\ \hline & C \\ \hline & D \\ \hline & D \\ \hline & D \\ \hline & -10 \text{ eV} \end{array} $	3

SECTION-D

Case Study Based Questions

29	A compound microscope consists of two lenses. A lens of short aperture and short focal length facing the object is called the object lens and another lens of short focal length but large aperture is called the eye lens. Magnifying power is defined as the ratio of angle subtended by the final image at the eye to the angle subtended by the object is seen directly, when both are placed at least distance of distinct vision.	
(i)	An objective lens consists of	1
	(a) Short aperture and short focal length (b)Large aperture and large focal length	
	(c) Short aperture and large focal length (d)Large aperture and short focal	
	length	
(ii)	An eyepiece consists of	1
	(a) Short aperture and short focal length (b)Large aperture and short focal	
	length	
	(c)Short aperture and large focal length (d)Large aperture and large focal	
	length	
(iii)	Formula of magnifying power	1
	(a) $M = 1 + (alpha/beta)$ (b) $M = (alpha/beta)$	
	(c) $M = (beta/alpha)$ (d) $M = 1 + (beta/alpha)$	

(iv)	A compound microscope with an objective of 1.0 cm, focal length and Eyepiece 2.0cm.Focal length of a tube is 20cm.Calculate the magnifying power of the microscope, if final image is formed at least distance of distinct vision	1
	(a)170 (b) 27 (c) 140 (d) 270	
	OR	
	A compound microscope has magnification of 30. The focal length of	
	Eye piece is 5cm. assuming the f in a l image is to be formed at least	
	by objective.	
	(a)10 (b) 15 (c) 13 (d) 5	
30	A pure semiconductor germanium or silicon, free of every impurity is called	
	intrinsic semiconductor .At room temperature, a pure semiconductor has very	
	is low	
	When the impurity atoms of valance five or three are doped in a pure	
	semiconductor, we get respectively n-type or p type extrinsic semiconductor. In case of doped semiconductor $n_e n_h = n^2$. Where n_e and n_h are the number	
	density of electron and hole charge carriers in a pure semiconductor. The	
	conductivity of extrinsic semiconductor is much higher than that of intrinsic	
	semiconductor.	
(i)	Which of the following statements is not true?	1
	(a) The majority charge carriers in n-type semiconductors are holes.	
	(b) Doping pure Si with trivalent impurities gives p- type semiconductors.	
	(c) The resistance of intrinsic semiconductor decreases with increase of temperature	
	(d) All of the above.	
(ii)	The impurity atoms with which pure Ge should be doped to make a	1
	p- type semiconductor is	
	(a)Phosphorus (b) Boron (c) Arsenic (d) Antimony	
(iii)	Si at absolute zero temperature acts as	1
	(a) Semiconductor(b) Metal (c) Insulator (d) None of these	
(iv)	Electrons are majority charge carriers in	1
	(a) Intrinsic semiconductors (b)p-type semiconductor	
	OR	
	Electrons & holes are charge carriers in pairs	
	(a) Extrinsic semiconductors (b) n - type semiconductors	
	(c) p - type semiconductors (d) Intrinsic semiconductors	

SECTION-E

31	 (a) With the help of labeled diagram, describe the principle and working of an ac generator. Hence, obtain an expression for the instantaneous value of the emf generated. (b) The coil of an ac generator consists of 100 turns of wire, each of area 0.5 m2. The resistance of wire is 100 Ω The coil is rotating in a magnetic field of 0.8 T perpendiculars to its axis of rotation, at constant angular speed of 60 rad/s. Calculate the maximum emf generated and power dissipated in the coil. A series LCR circuit connected to a variable frequency 230 V source. L =5.0H, C=80µF, R=40Ω is shown in fig. 	5
	 L (a) Determine the source frequency which drives the circuit in resonance. (b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency. (c) Determine the rms potential drops across the Capacitor & resistor of the circuit. (d) Power factor of this circuit. (e) Plot a graph showing variation of current and frequency of a.c.source in series LCR circuit. 	
32	 (a) State Gauss law of electrostatics. Using it, calculate the electric field due to uniformly charged thin spherical shell at a point (i)inside the shell, (ii) outside the shell, (b) Two hollow concentric spheres S₁ and S₂ enclosing charges Q and 2Q respectively as shown in fig. What is the ratio of electric flux through S₁andS₂? OR (c) Derive an expression for torque experienced by an electric dipole in a uniform electric field 'E'. What is net force acting on this dipole? (d) An electric dipole of length 2 cm is placed with its axis making an angle of 60° with respect uniform electric field of 10⁵ N/C. If it experiences a torque of 8√3 Nm, calculate the magnitude of the (i) electric dipole moment, (ii) charge and (iii) Potential energy. 	5

33	(a) Draw ray diagram to show the refraction of light through a glass prism.	
	Hence obtain relation for angle of deviation in terms of the angle of	
	incidence, angle of emergence, and angle of prism. Write any two	5
	factors on which angle of deviation depend.	
	(b) Calculate the angle of minimum deviation for an equilateral prism of	
	refractive index $\sqrt{3}$.	
	OR	
	(a) State Huygens's principle. With the help of a diagram, show how a	
	plane wave is reflected from a surface. Hence verify the law of	
	reflection.	
	(b) A concave mirror of focal length 12 cm forms a three times magnified	
	virtual image of an object. Find the distance of object from the mirror.	